eoscircuits.mbcircuits package¶
Subpackages¶
Submodules¶
eoscircuits.mbcircuits.circuit module¶
Mushroom Body Circuit
This module supports:
1. Generating and changing random connectivity patterns between PNs and KCs with varying degree of fan-in ratio (number of PNs connected to a given KC) 2. Changing the strength of feedback inhibition of the APL neuron
-
class
eoscircuits.mbcircuits.circuit.
MBCircuit
(graph, config)[source]¶ Bases:
eoscircuits.basecircuit.Circuit
Mushroom Body Circuit
- Parameters
graph (networkx.classes.multidigraph.MultiDiGraph) –
config (eoscircuits.mbcircuits.circuit.MBConfig) –
- Return type
None
-
change_apl_strength
(N)[source]¶ Set APL Strength
- Parameters
N (float) – The larger the N the weaker the inhibition. N should be in the range of [1, inf]. Typical values are around
config.NK
- Return type
None
-
change_pn_to_kc
(routing=None, fanin=None, seed=None)[source]¶ - Parameters
routing (Optional[numpy.ndarray]) –
fanin (Optional[int]) –
seed (Optional[int]) –
- Return type
None
-
config
: eoscircuits.mbcircuits.circuit.MBConfig¶ Configuration of Circuit. Fully Specifies the Circuit
-
classmethod
create_from_config
(cfg)[source]¶ Create Instance from Config
- Parameters
cfg – Config instance that specifies the configuration of the module
- Returns
A new ANTCircuit instance
- Return type
-
classmethod
create_graph
(cfg)[source]¶ class method that creates an instance of networkx graph from configuration
- Return type
networkx.classes.multidigraph.MultiDiGraph
-
extra_comps
: List[NDComponent]¶ Extra Components to be aded to NeuroKernel at Run Time
-
property
inputs
¶ Output OTP Nodes IDs and the Variables
-
property
outputs
¶ Output BSG Nodes IDs and the Variables
-
class
eoscircuits.mbcircuits.circuit.
MBConfig
(NO:Iterable[Iterable[int]], affs:Iterable[float], receptors:Iterable[str]=None, resting:float=None, node_params:dict=<factory>, osns:Iterable[Iterable[str]]=None, NP:Union[int, Iterable[int]]=None, NPreLN:int=None, NPosteLN:Union[int, Iterable[int]]=None, NPostiLN:Union[int, Iterable[int]]=None, prelns:Iterable[str]=None, postelns:Iterable[Iterable[str]]=None, postilns:Iterable[Iterable[str]]=None, pns:Iterable[Iterable[str]]=None, osn_to_preln:Iterable[Iterable[float]]=None, osn_to_postiln:Iterable[Iterable[float]]=None, osn_to_posteln:Iterable[Iterable[float]]=None, preln_to_axt:Iterable[Iterable[float]]=None, axt_to_pn:Iterable[Iterable[float]]=None, postiln_to_pn:Iterable[Iterable[float]]=None, posteln_to_pn:Iterable[Iterable[float]]=None, NK:int=None, NAPL:int=None, NFanIn:int=6, kcs:Iterable[str]=None, apls:Iterable[str]=None, pn_to_kc:Iterable[Iterable[float]]=None, kc_to_apl:Iterable[float]=None, apl_to_kc:Iterable[float]=None)[source]¶ Bases:
eoscircuits.alcircuits.circuit.ALConfig
- Parameters
NO (Iterable[Iterable[int]]) –
affs (Iterable[float]) –
receptors (Iterable[str]) –
resting (float) –
node_params (dict) –
osns (Iterable[Iterable[str]]) –
NP (Union[int, Iterable[int]]) –
NPreLN (int) –
NPosteLN (Union[int, Iterable[int]]) –
NPostiLN (Union[int, Iterable[int]]) –
prelns (Iterable[str]) –
postelns (Iterable[Iterable[str]]) –
postilns (Iterable[Iterable[str]]) –
pns (Iterable[Iterable[str]]) –
osn_to_preln (Iterable[Iterable[float]]) –
osn_to_postiln (Iterable[Iterable[float]]) –
osn_to_posteln (Iterable[Iterable[float]]) –
preln_to_axt (Iterable[Iterable[float]]) –
axt_to_pn (Iterable[Iterable[float]]) –
postiln_to_pn (Iterable[Iterable[float]]) –
posteln_to_pn (Iterable[Iterable[float]]) –
NK (int) –
NAPL (int) –
NFanIn (int) –
kcs (Iterable[str]) –
apls (Iterable[str]) –
pn_to_kc (Iterable[Iterable[float]]) –
kc_to_apl (Iterable[float]) –
apl_to_kc (Iterable[float]) –
- Return type
None
-
NAPL
: int = None¶ Number of APLs
-
NFanIn
: int = 6¶ Number of PNs (regardless of receptor type) connected to each KC
-
NK
: int = None¶ Number of KCs
-
apl_to_kc
: Iterable[float] = None¶
-
apls
: Iterable[str] = None¶
-
default_pn_to_kc
(fanin=None, seed=None)[source]¶ PN to KC Connectivity
The indices of PNs connected to KC is sampled uniformly from all the PNs, regardless of receptor types.
- Parameters
fanin (Optional[int]) – number of PNs connected to a single KC
seed (Optional[int]) – seed for random number generator
- Return type
numpy.ndarray
-
kc_to_apl
: Iterable[float] = None¶
-
property
kcdends
¶
-
kcs
: Iterable[str] = None¶
-
property
node_types
¶ List of Recognized Node Types
-
pn_to_kc
: Iterable[Iterable[float]] = None¶
-
exception
eoscircuits.mbcircuits.circuit.
MBException
[source]¶ Bases:
eoscircuits.basecircuit.EOSCircuitException
Base Mushroom Body Exception
eoscircuits.mbcircuits.model module¶
-
class
eoscircuits.mbcircuits.model.
KCDend
[source]¶ Bases:
object
-
params
= {'bias': 1.0, 'gain': 1.0}¶
-
Module contents¶
Mushroom Body Circuit
This module supports:
Generating and changing random connectivity patterns between PNs and KCs with varying degree of fan-in ratio (number of PNs connected to a given KC)
Changing the strength of feedback inhibition of the APL neuron